

Coimisiún na Scrúduithe Stáit State Examinations Commission

Scéimeanna Marcála

Fisic

Scrúduithe Ardteistiméireachta, 2004 Gnáthleibhéal

Marking Scheme

Leaving Certificate Examination, 2004

Physics

Ordinary level

LEAVING CERTIFICATE EXAMINATION

PHYSICS – ORDINARY LEVEL

MARKING SCHEME

2004

Introduction

In considering this marking scheme the following points should be noted.

- 1. In many instances only key words are given, words that must appear in the **correct context** in the candidate's answer in order to merit the assigned marks.
- 2. Marks shown in brackets represent marks awarded for partial answers as indicated in the scheme.
- 3. Words, expressions or statements separated by a solidus, /, are alternatives which are equally acceptable.
- 4. Answers that are separated by a double solidus, //, are answers which are mutually exclusive. A partial answer from one side of the // may not be taken in conjunction with a partial answer from the other side.
- 5. The descriptions, methods and definitions in the scheme are not exhaustive and alternative valid answers are acceptable.
- 6. The context and the manner in which the question is asked and the number of marks assigned to the answer in the examination paper determine the detail required in any question. Therefore, in any instance, it may vary from year to year.

Section A (120 marks)

Three questions to be answered.

Question 1	40 marks	_	
Draw a labelle	d diagram of the apparatus used in the experiment	6 +	2×3
labelled diagram	n to show:		
enclosed / fixed	l volume of gas / air		6
method of meas	suring volume e.g. volume scale		
method of meas	suring pressure e.g. pressure gauge		
method of vary	ing pressure / volume	any two	2 × 3

NOTE: no labels, deduct 2

Copy this table and fill in the last row by calculating $\frac{1}{Volume}$ for each

measurement

Pressure /kPa	100	111	125	143	167	200	250
Volume /cm ³	5.0	4.5	4.0	3.5	3.0	2.5	2.0
$\frac{1}{\text{Volume}}/\text{cm}^{-3}$	0.20	0.22	0.25	0.28/ 0.29	0.33	0.40	0.50

 7×1

one mark for filling in each 1/volume including value given	7×1
6 inverted values e.g. 1/5, etc.	(3)
Plot a graph on graph paper of pressure against $\frac{1}{\text{Volume}}$	4 × 3
label one axis correctly,(name / symbol / unit acceptable)	3
plot three points correctly	3
plot another three points correctly	3
straight line	3
if graph paper is not used, maximum mark 3×3	
if p versus V is graphed, maximum mark 2×3	
Explain how your graph verifies Boyle's law	2×3
(straight) line // constant	3
through origin /shows that pressure \propto 1/volume // some correct variation of Boyle's la	aw 3
Give one precaution that the student took in carrying out the experiment	3
after changing pressure wait a short time before taking readings / read the volume	
of the oil from the bottom of the meniscus / read the volume scale at eye level,	
safety precaution e.g. do not exceed the pressure limit of the apparatus, etc. any one	3

Q1. Plot a graph on graph paper of pressure against $\frac{1}{\text{volume}}$

Pressure / kPa

Pressure /kPa	100	111	125	143	167	200	250
Volume /cm ³	5.0	4.5	4.0	3.5	3.0	2.5	2.0
$\frac{1}{\text{Volume}}/\text{cm}^{-3}$	0.20	0.22	0.25	0.28 / 0.29	0.33	0.40	0.50

Question 2 40 marks

Draw a labelled diagram of the apparatus used		6 -	$+2 \times 3$
labelled diagram to show liquid / water in a calorimeter method of heating liquid stirrer	<pre>// block of metal // method of heating metal // joulemeter</pre>		6
insulation		any two	2×3
incorrect experiment, maximum n	nark 6 + 3		
NOTE: no labels, deduct 2			

What measurements of mass did the student take during the experiment?	2×3
mass of substance / liquid / water, mass of metal, mass of calorimeter, mass	
of calorimeter + liquid/water any two	2×3
mass of the metal block	(2×3)
inconsistency between the apparatus and the measurements	(3)
What temperature measurements did the student take during the experiment? initial/ minimum temperature of the substance / liquid / water /metal / calorimeter final / maximum temperature of the substance/ liquid / water /metal / calorimeter change in temperature (of the water) temperature of the substance/ liquid / water /metal / calorimeter	2×3 3 (2 × 3) (3)

Give a formula used to calculate the specific h	eat capacity of the
substance	

$E = m_{\rm w} c_{\rm w} \Delta \theta_{\rm w} + m_{\rm c} c_{\rm c} \Delta \theta_{\rm c}$	$//E = m_{\rm w} c_{\rm w} \Delta \Theta_{\rm w}$	10
$m_{\rm w} c_{\rm w} \Delta \theta_{\rm w} / m_{\rm c} c_{\rm c} \Delta \theta_{\rm c}$		(6)
$Q = /E = / VIt / m_{\rm c} c_{\rm c} \theta_{\rm c}$		(3)
Partial mark e.g. attempts word version	n of the equation	(3)

10 or 6 or 3

_

Give one precaution that the student took to get an accurate result	6 (or 3
lagging, use sensitive thermometer / use a thermometer graduated to 0.1°C, ensure that heating coil is completely immersed in the liquid, stir the liquid,		
large temperature change, etc.	any one	6
the precaution can be implied from the diagram if it has not already been awar	ded	
marks above		
partial answer e.g. repeat / average		(3)

Question 3 40 marks

Name a monochromatic light source sodium (lamp) / laser		6 or 3 6
partial answer e.g. any gas that produces a li	ne spectrum, yellow / red	(3)
Draw a labelled diagram of the apparatus diffraction grating/ Young's slit monochromatic light source spectrometer	s that you used in the exper	iment 6+2×3 6
scale	// metre stick	any two 2×3
NOTE: no labels, deduct 2 What readings did you take during the exangle on left	periment? // distance from grating to s	6 + 3 creen
angle on right	// distance between centre a	and first order
grating constant / number of lines per metre		$\begin{array}{c} \text{any two} \\ \text{any one} \end{array} \begin{array}{c} 6+3 \\ 6 \end{array}$
What formula did you use to calculate the $(n)\lambda$	e wavelength of the light?	3×3 3
= d / s		3

 $\sin\theta$ // $\frac{x}{D}$ 3

or 2
4
(2)

Question 4 40 marks

Name the instrument used to measure the current ammeter /milliammeter / galvanometer A / multimeter	6 or 3 6 (3)
How was the potential difference measured in the experiment? voltmeter	4 or 2 4
V / multimeter / from the voltage	(2)
ammeter and voltmeter named but in reverse order	(6)
Name the apparatus Y and give its function in the experiment	6+3
rheostat / variable resistor / potential divider	6
varies the resistance / potential / voltage / current / power	3
resistor	(3)
Draw a graph on graph paper of the current against the potential difference	4×3
label one axis correctly.(name / symbol / unit acceptable)	3
plot three points correctly	3
plot another three points correctly	3
straight line	3
	-

if graph paper is not used, maximum mark 3×3

Current against Potential Difference

Calculate the slope of your graph and hence determine the resistance of the copper sulfate solution

 3×3

$1.67 \pm 0.2 (\Omega)$ or value consistent with graph	1	3×3
correct substitution into slope formula	// 0.60	(2×3)
slope formula	// two points highlighted on the graph	(3)

SECTION B (280 Marks)

Five questions to be answered

Qı	estion 5	any <i>eight</i> parts	56 marks		
То	tal the <u>best 8</u>	from 10 parts			
(a)	Calculate th 98 (J) substitute in	e potential energy of to equation	the ball		7 or 4 7 (4)
(b)	Explain the (physical pro- with (changi partial answ	term thermometric p operty that) changes (m ing) temperature er e.g. valid example	roperty neasurably / continuall	y)	4 + 3 4 3 (4)
(c)	Give one ap measuring s used to study partial answ	plication of the Doppl peed / speed gun, (mea y blood flow, used to s er e.g. example of Dop	er effect suring) red shift, ultra tudy heart beat, etc. pler effect	sonic scanners, any correct appl	7 or 4 ication 7 (4)
(d)	Name two p red, blue, g any one	rimary colours of ligh reen	ıt		7 or 4 any two 7 (4)
(e)	Which one of sound waves	of the following is not	part of the electroma	ignetic spectrum?	7 7
(f)	Name the ele capacitor / c partial answ	e ctrical component re ondenser er e.g. parallel plate, st	presented in the diag	ram	7 or 4 7 (4)
(g)	Name two sa fuse, (trip) s device / RC	afety devices that are witch / miniature circu CD, earthing, etc.	used in domestic elec it breaker / MCB, resid	etric circuits dual current	7 or 4 any two 7 any one (4)
(h)	Calculate th 7.5 (N) / 750 correctly sub	te force on the conduc 0 (T A cm) bstituted two quantities	tor into the formula		7 or 4 7 (4)
(i)	Which one o electrons	f the following is emit	ted from a metal sur	face	7 7
(j)	What is nucl break up of a partial answ diagram may	lear fission? nucleus / atom er e.g. release of energy y merit full marks	y / neutrons		7 or 4 7 (4)

Question 6 56 marks

Defi	ne (i) velocity, (ii) a	cceleration			$2 \times (2 \times 3)$
(i)	velocity:	rate of change	// dista	ance ÷ time / speed	3
		$v = \frac{s}{t}$	// III pe		(2×3)
	correct unit	·			(3)
(ii)	acceleration:	rate of change of velocity/speed y = u	// char //	nge in velocity/speed per second	3 3
		$a = \frac{v - u}{t}$			(2×3)
	correct unit				(3)
Desc appar proce	ribe an experimen ratus: trolley timer / photo edure: measure dista measure time	t to measure the v gate ince	elocity	of a moving object // motion sensor // connect datalogger to // start program	4×3
conc	lusion: $v = \frac{s}{t}$			// chose distance versus	s time graph
accej a lab	ot valid alternatives elled diagram may 1	nerit marks		an	y four 4×3
Sket one l accel no ac	ch a velocity–time abelled axis,(name erating from origin celeration from t =	graph / symbol / unit accord to $t = 4 s$ 4 s onwards 28	eptable)		$2 \times 4 + 3$ 4 4 3
Calc a = 7 corre subst	ulate the acceleration (m s ⁻²) ct substitution into itutes one value cor	ion of the cheetah equation i.e. $28 = 0$ rectly	4 during $0 + a (4)$	14 time the first 4 seconds)	3×3 3×3 (2×3) (3)
Calc 1050 corre	ulate the resultant (N) / answer consis ct substitution into	force acting on th stent with the calcul formula	e cheet lated va	ah while it is accelerat lue for acceleration abo	6 or 3 by e 6 (3)
Nam gravi fricti air re	e two forces acting tational / gravity / v on sistance / drag	g on the cheetah wh veight	hile it is	s running	2 × 3
(prop	uision) force of mu	scies, etc.			any two 2×3

Question 7 56 marks

What is meant by conduction?	2×3
without the movement of matter / atoms // through metals / solids // atoms vibrate // (by vibration) from molecule to molecule	3
Name two other ways of transferring heat convection / example radiation / example	2 × 3 3 3
Describe an experiment to show how different solids conduct heat	
at different rates	4×3
heat source	3
procedure: heat all the ends of the rods at the same time, rods same length and same thickness, other valid detail	d 3
observation/conclusion: e.g. wax melts on (different) rods at different times,	
(different) rods conduct heat at different rates	3
a labelled diagram may merit marks	
Give two ways in which the <i>U</i> -value of a house can be reduced insulation / fibreglass in attic insulation in cavity wall double glazing	6 + 2
carpets	any two $6 + 2$ any one (6)
What energy conversion takes place in a solar panel? light / solar to heat	2 × 3 3 3
Why are the pipes in the solar panel usually made from copper?	2×3
conductor / reference to metal partial answer	3 (3)
Why are the pipes in the solar panel usually painted black?	2×3
absorber (of radiation) // reflector partial answer e.g. black attracts heat	3 (3)
Why does the warm water rise to the top of the solar panel? lower	2×3
density	$(2 \vee 2)$
partial answer e.g. it is lighter, reference to water currents	(2×3) (3)

Question 8 56 marks	
Explain diffraction spreading out (of a wave) around an obstacle / opening bending of waves around corners labelled diagram or correct example may merit marks	2×3 3 (2 × 3)
Explain interference waves meeting add / change in amplitude / displacement labelled diagram or correct example may merit marks	2 × 3 3 3
Describe an experiment to demonstrate the interference of sound apparatus: two sources e.g. two loudspeakers // tuning fork procedure: walk between speakers // rotate (vibrating) tuni observation/conclusion: observed sound varies in loudness labelled diagram may merit marks accept valid alternatives	6+3+2 6 6 6 1 1 2
What is the name given to the points on the string marked (i) X = node / null (point) (ii) Y = antinode	$\frac{6+3}{6+3}$ two correct 6+3
correct names mismatched / one correct	(6)
partial answer e.g. crest/trough	(3)
How many wavelengths are contained in the distance marked L? two four	6 or 3 6 (3)
State two factors on which the natural frequency of a stretched structure length / <i>l</i> tension / <i>T</i> thickness / mass per unit length / (linear density) / cross-sectional area material	ing depends $6+3$ / radius / μ any two $6+3$ any one (6)
Calculate the frequency of the note f = 240 - 243 (Hz) correct substitution into both sides of the equation / $340 \div 1.4$ correct substitution into one side of the equation	3×3 3×3 (2×3) (3)

Question 9 56 marks

What is an electric current? flow of / movement		6+3
charge / electrons / electricity	two lines one line	6 + 3 (6)
partial answer e.g. unit		(3)
Name two other effects of an electric current		6 + 3
chemical	two lines one line	6+3 (6)
partial answer e.g. light / sound		(3)
Describe an experiment to show the heating effect of an electric curr apparatus: source e.g. power supply conductor e.g. bulb, wire	ent	4 × 3 3
procedure: set up the circuit / allow current to flow observation/conclusion: wire gets hot accept valid alternatives a labelled diagram may merit marks		33
State two factors on which the heating effect of an electric current de size of current, (size of) voltage, resistance / length of coil, amount of tir	e pends ne any two	$\frac{2 \times 3}{2 \times 3}$
Calculate the current that flows through the heater		2×3
8.7 (A) / 0.0087 (kA) correct substitution into one side of the equation		2×3 (3)
What is the kilowatt-hour? energy		$\frac{2 \times 3}{3}$
used by a 1 kW (appliance/device) in 1 hour unit used by the FSB		3 (2 × 3)
partial answer e.g. reference to joule		(3)
Calculate the cost of using a 2 kW electric heater for 3 hours at		•
10 cent per kilowatt-hour 60 (cent) / 0.6 (euro)		2×4 2×4

60 (cent) / 0.6 (euro)	2×4
multiplies at least two of the quantities / 2×3 / 6 (units)	(4)

Question 10 56 marks

What is radioactivity?		6 + 3
disintegration / decay		
of nuclei / atoms		
emission of radiation / energy $/\alpha / \beta / \gamma$	any two lines any line	6+3 (6)
Name the French physicist who discovered radioactivity in 1896 (Henri) Becquerel / Curie		6 or 3 6
partial answer e.g. named nuclear scientist		(3)
Name the radiations labelled X, Y and Z in the diagram	6	5 + 3 + 3
(i) $X = alpha / \alpha$ (ii) $Y = gamma / \gamma$ (iii) $Z = beta$	ta / β hree correct 6	5+3+3
two correct / all radiations named correctly but mismatched maximum	n mark	(6+3)
any one correct		(6)
Which one is the most ionising?		6
alpha / α / X		6
Name a detector of ionising radiation		6
GM tube / / cloud chamber / ionisation tube / scintillation counter / gold leaf electroscope / solid state detector photographic film, ZnS screen, etc.	a	ny one 6
Outline the principle on which the detectors works ionisation, blackens film, fluorescence		6 or 3 6
partial answer e.g. principle inconsistent with the named detector		(3)
(i) Two precautions that should be taken when dealing with radio	oactive source	es 5 or 3
(thick) shielding, long life (containers), never eat / drink / smoke in v security (against theft), isolating, use protective clothing / gloves / us when handling, labelling, minimise time spent using radioactive sour	vicinity, se a tongs rce,	
keep as far away from source as possible, use warning signs, et	c. any any	y two 5 y one (3)
(ii) One use of a radioactive source		3
carbon dating, radiotherapy, sterilising medical equipment, killing ba	cteria in food	
finding leaks in pipes and seals, checking thickness of materials, smo	oke alarm	
tracers in medicine / agriculture, energy source e.g. pacemakers, etc.	any	one 3
(iii) One harmful effect of radiation		3
cancer, skin burns, sickness, cataracts, cause sterility, damage to cro	ps,	
genetic, etc. any one		3
nage 10		

Question 11 56 marks

(a)	Draw a diagram to show how a ray of light is transmitted through	
	an optical fibre	7 or 4
	incident ray in fibre	+ 7
	one correct / no fibre shown	(4)
		(4)
(b)	How is the escape of light from the sides of an optical fibre prevented? cladding/coating with glass/plastic (of lower/different refractive index), because of total internal reflection	7 or 4
	partial answer	(4)
(c)	Name a material that is used in the manufacture of optical fibres. glass / plastic / sand / silicon	7 7
(d)	What is the bending of light as it moves from one medium to another called? refraction / refracted	7 7
(e)	What is meant by the refractive index of a material?	7 or 4
	$(n =) \frac{\sin r}{\sin r} // \frac{1}{\sin c} // \frac{r \operatorname{Kear} \operatorname{depth}}{\operatorname{Apparent} \operatorname{depth}} // \operatorname{ability to refract / bend light}$	7
	partial answer e.g. one error in equation	(4)
(f)	Define the critical angle.	4+3
	angle in denser medium	_
	that gives angle of refraction of 90° two corrections of 90°	t 7
	partial answer e.g. depends on the refractive index / where t.i.r. occurs a labelled diagram may merit full marks	(4) (4)
(g)	When will total internal reflection occur? when angle of incidence is greater	4 + 3
	than critical angle two correc	t 7
	one correct	t (4)
	partial answer e.g. when using optical fibres	(4)
(h)	Give one use for optical fibres endoscope, telecommunications, binoculars, correct specific ornament/toy,	7 or 4
	to supply light to inaccessible places, etc. any of	one 7
	partial answer e.g. ornaments, toys	(4)

Question 12 56 marks

part (a) Define momentum	2 ~ 3
mass	$\frac{2 \times 3}{3}$
(multiplied) by velocity	3
p = mv	(2×3)
Give the unit of momentum kg m s ⁻¹ , N s	3 3
State the principle of conservation of momentum momentum before	3×3
equals	3
momentum after (in a closed system / when no external force acts)	3
$m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$	(3×3)
(total) momentum is conserved	(2×3)
Calculate the initial velocity of the boat after the child steps out correct substitution into both sides of the equation i.e. $0 = (40)(2) + (50)$	$\frac{3 \times 3 + 1}{3 \times 3}$
each term omitted deduct 3	ja 5×3
$m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$ in context	(2×3)
$1.6 (m s^{-1})$	(10)
part (b) Cine and differences between a weak image and a circul image	
a real image can be obtained on a screen / a virtual image cannot, in a t	real image
the light rays meet / in a virtual image they do not, a real image is alway	ys inverted/
a virtual is erect, a real image is in front / a virtual image is behind, etc.	6
Use a ray diagram to show the formation of a real image by a conca	ave mirror 2 × 3
one ray reflected correctly	3
second ray reflected confectiv	5
How for from the minuter will the image he formed?	$2 \cdot 2 + 1$
Equation method Diagram meth	10d
left hand side of equation substituted correctly // focus shown a	at 20 cm 3
right hand side of equation substituted correctly // object shown	at 30 cm 3
correct rearrangement // image near 60) cm 3
v = 60 (cm) // done on graph	1 paper 1 (10)
	(10)
Give two uses for a concave mirror	2 × 3
torch / headlights /searchlight, dentist mirror, cosmetic / shaving mirror	<u>2 ~ J</u>
solar furnace, (reflecting) telescopes, etc.	any two 2×3

part (c)		
What is electromagnetic induction?		2×3
emf / voltage / potential difference / current is induced		3
(due to)changing (magnetic) flux / field // moving magnet		3
Name another device that is based on electromagnetic induction		3
dynamo, generator, induction motor, induction cooker, etc.	any on	e 3
Name the parts of the transformer labelled A, B and C in the diag A = primary / input (coil)	ram	6 + 3
B = secondary / output (coll)	-	(12)
C = (1ron) core / 1ormer	any two	6 + 3
partial answer e.g. coil in A or B, reference to step-up (transformer)	any one	(6) (3)
What is the voltage across B?	10 or	6 or 3
690 (V) / three times bigger		10
correct substitution into both sides of the equation / ≈ 77 / three times	smaller	(6)
partial answer e.g. correct substitution into one side of the equation		(3)
part (d) What are X-rays? electromagnetic / stated property e.g. high energy radiation / waves / rays		$\frac{2 \times 3}{3}$
How are electrons emitted from the cathode?		6 or 3
thermionic emission / heat		6
partial answer		(3)
What is the function of the high voltage acrossthe X-ray tube?to accelerate/ pull / attract /give more energy to// to produceelectrons// cathode rays / X	-rays	2 × 3 3 3
Name a suitable material for the target in the X-ray tube tungsten, molybdenum		4 4
Cive one use of X-rays		6 or 3
to nhotograph hones/internal organs to treat cancer to detect flaws		0013
in materials to determine the thickness of materials etc	any one	6
partial answer e.g. reference to photograph / medicine / industry, etc	uny one	(3)